Putting connected/autonomous vehicles to the test

Suzanne Murtha | 30 Sep 2015 | Comments

There are a variety of ways connected and autonomous vehicles (CAV’s) are currently being tested to advance their widespread progression to our roads. There are many parties involved—all playing a role in the process. The following testing methods are helping to ensure this technology will be highly functional in large-scale deployment environments.

Pilot Deployment Testing

Pilot programs provide the opportunity to test in less-than-ideal situations and real-world testing is key to understanding how to improve functionality. Testing is not always about working within a clean, ideal environment—most need to involve challenging environments that must be conquered.

On September 14, the United States Department of Transportation (US DOT) announced its awards for connected vehicle pilot deployment programs will go to New York City, NY; Tampa, FL; and WY. These cities and regions will receive up to $42 million to pilot next-gen technology in infrastructure and connected vehicles. The US DOT is also planning to support deployments in other cities and regions throughout the country, which will lead to even more successful larger-scale deployments. We’ll be able to see how connected and autonomous vehicles function and interact in a multi-modal environment at many different speeds, surrounded by pedestrians, bicyclists and non-connected vehicles.

Closed Track Testing

On the other hand, closed track testing is valuable for testing in an ideal, clean environment. Simultaneous to pilot testing, many organizations are developing closed track testing facilities. Repurposed airports, military bases, and even greenfield facilities across the country are being developed into facilities for closed track testing in places like New Jersey, Texas, Florida, California, and Michigan. These facilities are especially important to understand how to improve automated (or driverless) vehicles. For example, poorly striped and signed roads are a particular challenge for driverless cars. Closed tracks in various regions provide testing across different climates and weather environments. Some tracks are even capable of simulating their own varied weather situations.

Most importantly, the closed track environment allows near real-world testing for safety-critical applications without risking impact to other road users. The Society of Automotive Engineers (SAE) is currently developing testing standards which will help unify the various testing efforts, creating a common baseline of quality and safety.

Certification Testing

Certification testing measures and evaluates a particular aspect of a system’s performance using standardized metrics. A certification program may include one or several aspects of performance. For example, interoperability certification is currently specific to dedicated short-range communication (DSRC) testing. In the future, WiFi® and Federal Communications Commissions (FCC) testing may also be included in interoperability certification.

While all three are unique, these testing mechanisms have at least one thing in common—they all require input and cooperation of many involved parties. Pilot deployment testing involves input from dozens of stakeholders. Closed track testing involves engagement with users and standards developers. And certification testing involves engagement with equipment users, manufacturers, and test labs. This makes cooperation and collaborative partnerships perhaps the most critical component of improving and successfully deploying connected and autonomous vehicles.

> To continue the discussion on Intelligent Mobility, please join our dedicated LinkedIn Group